Searches for nearest neighbors in the encrypted index using vector similarity search. Supports single vector queries, batch queries, and semantic search with text content.
# Single vector query
index.query(query_vectors=vector, top_k=10)

# Batch vector queries
index.query(query_vectors=vectors, top_k=10)

# Semantic search with text
index.query(query_contents=text, top_k=10)

Parameters

ParameterTypeDefaultDescription
query_vectorsList[List[float]] or List[float] or np.ndarrayNone(Optional) Multiple query vectors for batch search
query_contentsstrNone(Optional) Text content for semantic search
top_kint100(Optional) Number of results to return per query
n_probesintNone(Optional) Number of clusters to probe for search
filtersDictNone(Optional) Metadata filters to apply
includeList[str]["distance", "metadata"](Optional) Fields to include in results
greedyboolFalse(Optional) Use greedy search algorithm

Returns

For single queries: List[Dict] - A list of result dictionaries. For batch queries: List[List[Dict]] - A list of result lists, one for each query vector.

Result Format

[
  [
    {
      "id": str, # Vector identifier
      "distance": float, # Similarity distance
      "metadata": Dict, # Vector metadata (if included)
      "contents": str, # Vector contents (if included)
      "vector": List[float] # Vector data (if included)
    },
    ...
  ],
  ...
]

Exceptions

Example Usage

Single Vector Query

# Basic similarity search
query_vector = [0.1, 0.2, 0.3, 0.4]
results = index.query(query_vectors=query_vector, top_k=5)

# Access results (single query returns a flat list)
for result in results:
    print(f"ID: {result['id']}, Distance: {result['distance']}")
Batch vector queries:
import numpy as np

# Query multiple vectors at once
query_vectors = [
    [0.1, 0.2, 0.3, 0.4],
    [0.5, 0.6, 0.7, 0.8],
    [0.9, 1.0, 1.1, 1.2]
]

batch_results = index.query(query_vectors=query_vectors, top_k=3)

# Process each query's results
for i, query_results in enumerate(batch_results):
    print(f"Results for query {i+1}:")
    for result in query_results:
        print(f"  ID: {result['id']}, Distance: {result['distance']}")

Semantic Search with Text

# Search using text content
results = index.query(
    query_contents="machine learning healthcare applications",
    top_k=10
)

for result in results:
    print(f"Found: {result['id']}")
    if 'contents' in result:
        print(f"Content: {result['contents'][:100]}...")
Advanced filtering and options:
# Query with metadata filters and custom options
results = index.query(
    query_vectors=[0.1] * 384,
    top_k=20,
    n_probes=5,  # Search more clusters for better recall
    filters={'category': 'healthcare', 'priority': 'high'},
    include=['distance', 'metadata', 'contents'],  # Include content in results
    greedy=True  # Use greedy search for potentially better results
)

for result in results:
    print(f"ID: {result['id']}")
    print(f"Distance: {result['distance']:.4f}")
    print(f"Category: {result['metadata']['category']}")
    print(f"Content preview: {result['contents'][:50]}...")
    print("---")