VectorItem
Represents a single vector with its associated data.Fields
Field | Type | Description |
---|---|---|
Id | string | Unique identifier for the vector (required) |
Vector | []float32 | The vector data as float32 slice |
Contents | NullableContents | Optional text content associated with the vector |
Metadata | map[string]interface{} | Optional key-value pairs for filtering and retrieval |
CreateIndexParams
Parameters for creating a new encrypted vector index.Fields
Field | Type | Required | Description |
---|---|---|---|
IndexName | string | Yes | Unique identifier for the index |
IndexKey | []byte | Yes | 32-byte encryption key (use GenerateKey() to create) |
IndexConfig | IndexModel | No | Index configuration (IVF, IVFFlat, or IVFPQ) |
Metric | *string | No | Distance metric (“euclidean”, “cosine”, “dot_product”) |
EmbeddingModel | *string | No | Name of embedding model to associate |
Index Configuration Types
IndexModel Interface
All index configuration types implement this interface.IVF Configuration
Create an IVF (Inverted File) index configuration.IVFFlat Configuration
Create an IVFFlat (Inverted File Flat) index configuration for higher accuracy.IVFPQ Configuration
Create an IVFPQ (Inverted File with Product Quantization) index configuration for memory efficiency.Parameters
Parameter | Type | Description |
---|---|---|
dimension | int32 | The dimensionality of vectors that will be stored |
pqDim | int32 | Product quantization dimension (typically dimension/8 or dimension/16) |
pqBits | int32 | Bits per PQ code (typically 8, higher = more accurate but larger) |
Response Types
QueryResponse
Response from similarity search operations.QueryResultItem
A single result from a similarity search query.GetResponse
Response from Get operations containing retrieved vectors.ListIDsResponse
Response from ListIDs operations.TrainParams
Parameters for training an encrypted vector index.Fields
Field | Type | Description |
---|---|---|
BatchSize | *int32 | Number of vectors processed per training batch (default: 2048) |
MaxIters | *int32 | Maximum training iterations (default: 100) |
Tolerance | *float64 | Convergence tolerance for training (default: 1e-6) |
MaxMemory | *int32 | Maximum memory usage in MB, 0 = no limit (default: 0) |
NLists | *int32 | Number of IVF clusters, 0 = auto-determine (default: 0) |